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Introduction to Measurement

Eric Guntermann

January 8th, 2016
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What you need

R

RStudio

R code file

Datasets

You can find all of this at:
http://ericguntermann.com/measurement.html
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What we will learn

Quick review of R

What is scaling/measurement?

Data theory

Summated ratings scales

Principal components analysis

Factor analysis

Multidimensional scaling

Text analysis
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Quick review of R

Objects store information

Commands/functions are performed on input objects and their output
is assigned (<-) to output objects

Commands are stored in packages
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Applying a command to an input object and assigning the
output to another object

output object <- command(input object)
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Scaling and dimensionality

Scaling is about optimizing information. We seek:

Power: explain variance
Parsimony: minimize number of dimensions

Dimensionality: number of important sources of variability among set
of objects

Generally, we can present results graphically
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Theories, hypotheses, and operational hypotheses

Concept Concept

Variable Variable

Indicator Indicator

Theory

Hypothesis

Operational hypothesis
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An indicator is a measure of a concept

A concept is abstract, rarely directly observable

An indicator is directly observable
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Data theory

Definition: study of extracting information from empirical
observations

The information we extract is our data

Using various techniques, we produce data for analysis

All data analysis relies on an often implicit data theory

Knowing about data theory gives us a lot of freedom!

Allows researchers to be creative
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Difference between data and observations

We observe a lot of things

But we only retain part of these
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Example: response to survey question

Time

Physiological reaction

Length of response

Answer
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General Principle : Latent variable explains variability in a
number of observable variables

Indicator 1

Latent variable Indicator 2

Indicator 3
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Comparison to regression

X1 = α1 + β1 ∗ ω + ϵ1
X2 = α2 + β2 ∗ ω + ϵ2
X3 = α3 + β3 ∗ ω + ϵ3
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Comparison to regression: three latent variables

X1 = α1 + β1a ∗ ω1 + β2a ∗ ω2 + β3a ∗ ω3 + ϵ1
X2 = α2 + β1b ∗ ω1 + β2b ∗ ω2 + β3b ∗ ω3 + ϵ2
X3 = α3 + β1c ∗ ω1 + β2c ∗ ω2 + β3c ∗ ω3 + ϵ3
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Other words for latent variable

Factor

Dimension

Component
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Coombs’ Data Theory

Two of four types of data (with their scaling methods):

Single stimulus data: place objects along one or more dimensions, eg.
people and intelligence tests, survey respondents and left-right scale
(summated ratings scale, principal components analysis, factor analysis)
Similarities data: proximity relation between pairs of objects from the
same set, eg. distances between cities, similarity between political
parties (multidimensional scaling)
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Summated Rating Scales (i.e. Likert scales)

We have scores of n units on k items

k items are considered imperfect observations on underlying
characteristic

We assume k variables are scored in the same way

We ”collapse across the columns“ (i.e. take the mean within each
row)

Major assumption: there is a dimension underlying the items (can
create false dimensions)
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Why?

Give us finer resolution: one 0/1 item divides dimension into two, two
0/1 items divide dimension into three... (each item adds a cutting
point)

k items with m categories lead to k(m-1) + 1 distinct scores

Increase level of measurement

Reduce measurement error. Each item consists of i’s true position
along dimension plus error: Vij = Ti + Eij

If we assume the errors cancel out (i.e. E (Ej)) = 0, when we add more
items to the scale, it gets closer and closer to the underlying dimension

Another assumption: Each item has a monotonic relationship to
underlying dimension (i.e. Monotone homogeneity)
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How do we verify our assumptions?

We do an item analysis: make sure each item has a monotonic
relationship with the underlying dimension

Best not to use correlations:

Are inflated because scale contains items
Only measure linear relationships

Don’t rely only on Chronbach’s alpha, because it measures linear
relationships among items and is affected by outliers!

Instead look at graphs showing item against the scale without the
item and a loess curve (rest plot)
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Chronback’s alpha

α =
kr̄

1 + r̄(k − 1)

k is the number of items
r̄ is the mean correlation among the items
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Problems with alpha

Based on means correlation: means are strongly influenced by
extreme values

There might be clusters: items 1 and 2 are related and items 3 and 4
are correlated, but no correlation between the first two and the last
two

Only measures linear relationships

Increases with number of items
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Potential problem with summated rating scales

Model relies on the assumption that an underlying dimension exists

Can give false positives, especially if only use alpha. Beware of
clustering!

If you have any doubt about items, don’t create summated ratings
scale
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Principal Components Analysis

Get orthogonal (uncorrelated), variance-maximizing components (i.e.
capture most variance)

Each component is a linear combination of the variables:
Ck = ak1X1 + akX2 + ...+ akmXm

Atheoretical: we don’t have a theory that there are one or more
underlying dimensions

Not about small number of latent variables. Just components that
soak up variance

Find one dimension that captures most variance in variables, then find
a second that is uncorrelated with the first which captured the
greatest amount of remaining variance, ...
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Principal Components Analysis (2)

Important to standardize data. Otherwise, variables with biggest
variance will be most strongly related to first component.

Goals: explore dimensional structure of data and possibly reduce
dimensionality

Not necessarily data reduction. Only if small number of components
capture lots of variance

Express k variables with less than k variables, which are orthogonal
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Factor analysis (i.e. exploratory factor analysis)

Goal: find factors (latent causes) that are common to two or more
indicators

Factor indeterminacy: there are infinitely many solutions

PCA: finding underlying sources of variation

FA: finding underlying causes. Don’t try to capture all variation.

Assumption In FA: all variables are caused by the same static source

Factors exist in the real world. In PCA, components depend on
variables.

Usually fewer common factors than observed variables
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Factor analysis (2)

Total variance = common + specific + and random measurement
error

Communality: amount of variable’s variance that is derived from
common source, that it shares with other variables

Unique variance: specific to variable

Principle components doesn’t allow for unique variance. It tries to
capture all variance.

Factor pattern matrix: factor loadings

Factor structure matrix: correlations between factors and observed
variables
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Factor analysis (3)

Unlike PCA, factors can be rotated to make them more interpretable

We are looking for simple structure (i.e. parsimony)

Each factor should affect as few variables as possible
Each variable should be explained by as few variables as possible

Try to get factors to run through clouds of vectors

Varimax: orthogonal rotation

Promax: oblique rotation

Factor scores: estimated values of latent variable for each of our
observations
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Multidimensional scaling (MDS)

Definition: family of data analysis methods all of which portray the
data structure in a spatial fashion, easily asimilated by the untrained
eye (Young).

Scaling for dissimilarities data (distances among cities, differences in
perceptions of parties)

Data: matrix of dissimilarities

Purpose (Borg, Groenen, and Mair):

Visualize proximity/dissimilarity data
Uncover dimensions of judgment

Analogy to map: MDS starts with distances and produces a map
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Multidimensional scaling (2)

Place objects in geometric space such that rank-order of distances
between objects corresponds to rank-order of dissimilarities

Much easier to interpret small number of points than a matrix of
correlations among them!

Input data can be ordinal or interval/ratio, but the output distances
are interval/ratio either way

Metric MDS: interval/ratio input. Distances are a linear function of
dissimilarities

Non-metric MDS: interval/ratio input. Distances are a monotonic
function of dissimilarities.

Better to have large number of points. It constrains the placement of
the points more.
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Wordfish

Same principle : latent variable explains the number of times each
word is used

Developed by Slapin and Proksch (2008)

Usually used for manifestos
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Wordfish Model

yij ∼ Poisson(λij)
λij = exp(αi + ψj + βj ∗ ωi )
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Eiffel tower of words (Slapin et Proksch 2008)
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